基于退化函数自适应优化与灰度平均的高温DIC测量方法
CSTR:
作者:
作者单位:

1.哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
2.黑龙江省先进智能感知技术协同创新中心,黑龙江 哈尔滨 150001

作者简介:

通讯作者:

中图分类号:

基金项目:


High-temperature DIC measurement method based on adaptive optimization of degradation function and grayscale average
Author:
Affiliation:

1.School of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
2.Heilongjiang Province Advanced Intelligent Perception Technology Collaborative Innovation Center, Harbin 150001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高温环境下热气流扰动导致的散斑图像模糊及噪声耦合难题,提出融合图像退化理论与多帧信号处理的协同复原方法。首先,通过构建基于结构相似性指数(Structural Similarity Index, SSIM)的自适应损失函数优化模型,自适应估计退化参数,突破传统固定退化模型与实际热扰动失配的局限性;然后,结合维纳滤波与灰度平均技术,实现去模糊与降噪的联合优化,解决噪声抑制与细节保留难以兼顾的技术问题。600 ℃高温实验平台验证结果表明:利用传统灰度平均法处理得到的图像位移测量均方根误差为0.006 4 mm;利用基于退化函数自适应优化与灰度平均的高温数字图像相关(Digital Image Correlation, DIC)测量方法处理得到的图像位移测量均方根误差为0.004 7 mm,图像质量显著提升,满足亚像素级精度要求。该方法无需使用复杂硬件,且无需预知热流场参数,显著提升了高温DIC测量的鲁棒性,为极端工况下的材料变形分析提供了低成本、高精度的解决方案,具有重要工程应用价值。

    Abstract:

    To address the challenges of speckle image blurring and noise coupling caused by thermal airflow disturbances in high-temperature environments, a collaborative restoration method that integrates image degradation theory and multi-frame signal processing is proposed. Firstly, by constructing an adaptive loss function optimization model based on the Structural Similarity Index (SSIM), the degradation parameters are adaptively estimated, breaking through the limitations of the mismatch between the traditional fixed degradation model and the actual thermal disturbances. Then, by combining Wiener filtering and grayscale averaging techniques, the joint optimization of deblurring and denoising is achieved, solving the technical problem of balancing noise suppression and detail preservation. The verification results on a 600 °C high-temperature experimental platform show that the root mean square error of image displacement measurement processed by the traditional grayscale averaging method is 0.006 4 mm; the root mean square error of image displacement measurement processed by the high-temperature Digital Image Correlation (DIC) measurement method based on adaptive optimization of the degradation function and grayscale averaging is 0.004 7 mm, and the image quality is significantly improved, meeting the sub-pixel accuracy requirements. This method does not require the use of complex hardware and does not need to know the parameters of the heat flow field in advance, significantly improving the robustness of high-temperature DIC measurement. It provides a low-cost and high-precision solution for material deformation analysis under extreme working conditions and has important engineering application value.

    参考文献
    相似文献
    引证文献
引用本文

毛承泷, 高山, 刘海龙, 王梓旭.基于退化函数自适应优化与灰度平均的高温DIC测量方法[J].计测技术,2025,45(4):48~56:
10.11823/j. issn.1674-5795.2025.04.03.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-10
  • 出版日期:
文章二维码