基于改进YOLO的动态加权竹木缺陷检与评估方法
CSTR:
作者:
作者单位:

1.厦门大学 航空航天学院,福建 厦门 361005
2.南平智创技术服务有限公司,福建 南平 354200
3.广州阿普顿自动化系统有限公司,广东 广州 510530

作者简介:

通讯作者:

中图分类号:

基金项目:


Dynamic weighted method for defect detection and evaluation in bamboo and wood materials based on improved YOLO
Author:
Affiliation:

1.School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
2.Nanping Zhichuang Technology Services Co., Ltd., Nanping, 354200, China
3.Guangzhou Upton Automation Systems Co., Ltd., Guangzhou 510530, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前竹木加工机械性能不足及竹木材料固有缺陷所导致的加工成品质量不稳定问题,聚焦于木材智能制造过程中的缺陷检测关键技术,提出了一种基于改进YOLO(You Only Look Once)目标检测算法的集成化质量评估系统。该系统创新性地引入了多参数缺陷权重机制,通过量化分析缺陷尺寸、缺陷特征及缺陷严重性等关键指标,构建了基于模糊综合评价的木材质量分级模型。实验结果表明:该系统能够有效地将木材产品划分为优等品(A级)、良品 / 合格品(B级)及不合格品(C级)3个等级。在Plywood木材缺陷数据集上,实现了91.3%的全类别平均精度均值(mean Average Precision@0.5, mAP@0.5),其动态权重分级策略与人工评估结果的误差低于5%(欧氏距离0.063, 杰卡德指数0.892),为木材智能制造提供了高效、可扩展的质量评估范式,具备显著的工程应用价值。

    Abstract:

    To address the unstable quality of processed bamboo and wood products caused by both the performance limitations of current processing machinery and the inherent defects of bamboo and wood materials, this study focuses on key defect detection technologies within intelligent wood manufacturing, and proposes an integrated quality assessment system based on an improved YOLO (You Only Look Once)object detection algorithm. Innovatively, the system incorporates a multi-parameter defect weighting mechanism, enabling quantitative analysis of critical indicators such as defect size, characteristics, and severity. Subsequently, a wood quality grading model was constructed using fuzzy comprehensive evaluation. Experimental results demonstrate that the system effectively categorizes wood products into three grades: superior (Grade A), qualified (Grade B), and unqualified (Grade C). For the Plywood wood defect dataset, the system achieved mean average precision@0.5 (mAP@0.5) of 91.3%. Moreover, the dynamic weighting-based grading strategy showed a deviation of less than 5% compared to manual evaluation results (Euclidean distance: 0.063; Jaccard index: 0.892). This research provides an efficient and scalable quality assessment paradigm for intelligent wood manufacturing, demonstrating significant engineering application value.

    参考文献
    相似文献
    引证文献
引用本文

张沛轩, 董一巍, 张怿, 殷锐扬, 吴仙星, 李首政.基于改进YOLO的动态加权竹木缺陷检与评估方法[J].计测技术,2025,45(4):74~86:
10.11823/j. issn.1674-5795.2025.04.06.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-10
  • 出版日期:
文章二维码