基于LS-SVM的浮选药剂量优化设定 |
LS-SVM Based Optimal Setting of Reagent Dosage for Flotation |
|
HTML 查看全文 查看/发表评论 下载PDF阅读器 |
中文摘要: |
针对矿物浮选在线检测X荧光分析仪缺失、人工检测严重滞后的问题,提出基于最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的浮选药剂量优化设定方法。该方法首先利用历史数据建立基于LS-SVM的药剂量优化模型,然后采用该模型实现浮选药剂量的优化设定。工业数据仿真结果表明,所提方法能够实现浮选生产过程的的指标要求。 |
英文摘要: |
X-ray fluorescence analyzer is in deficiency and manual detection results in large time delay in present online detection of mineral flotation. Aiming at these issues, a novel optimal setting of reagent dosage based on least squares support vector machine (LS-SVM) is proposed. Through obtaining a large amount of history process data from flotation running, LS-SVM is used to implement optimal setting of reagent dosage for flotation process. The simulation results based on experiment data prove the effectiveness of the proposed method. |
|
中文关键词: 浮选 过程数据 LS-SVM 药剂量 |
英文关键词:flotation process data LS-SVM reagent dosage |
基金项目: |
DOI:10.11823/j.issn.1674-5795.2015.03.05 |
引用本文:张新林.基于LS-SVM的浮选药剂量优化设定[J].计测技术,2015,35(3):. |
关闭 |