基于电光强度相位级联调制的激光扫频干涉测距方法
Frequency scanning interferometry method for distance measurement based on electro-optical intensity-phase cascade modulation
投稿时间:2024-12-09  修订日期:2025-01-02
HTML    查看/发表评论  下载PDF阅读器
中文摘要:
      激光扫频干涉(FSI)绝对测距技术在高端装备制造和空天科技领域展现出广阔的应用前景和重要的技术潜力。针对传统FSI在高动态测量场景下的测距误差显著增大问题,提出了一种基于电光强度-相位级联调制的FSI测距方法。在对传统FSI系统中光程差变化放大效应进行理论推导的基础上,设计了一种电光强度-相位级联调制的双边带FSI测距系统。该系统通过单光电探测器对扫频干涉光进行光电检测,并采用全相位快速傅里叶变换(APFFT)高精度提取干涉信号的相位信息,实现了对待测目标绝对距离和相对位移的同步高精度测量。仿真结果表明,该方法的绝对距离测量精度可达10 μm以下,相对位移测量精度可达10 nm以下,有效验证了所提方法的准确性和可行性。
英文摘要:
Frequency Scanning Interferometry (FSI) absolute distance measurement technology exhibits significant potential for applications in advanced manufacturing and aerospace technology. To address the issue of significant measurement errors in traditional FSI systems under high-dynamic conditions, this paper proposes an FSI measurement method based on electro-optical intensity phase cascade modulation. Building on the theoretical derivation of the amplification effect caused by optical path variation in traditional FSI systems, a double-sideband FSI measurement system with electro-optical intensity-phase cascade modulation is designed. The system employs a single photodetector for photoelectric detection of the frequency-scanning interference signal. An All-Phase Fast Fourier Transform (APFFT) is used to extract the phase information of the interference signal with high precision, enabling the simultaneous high-accuracy measurement of both absolute distance and relative displacement of the target. Simulation results show that the proposed method achieves an absolute distance measurement accuracy of less than 10 μm and a relative displacement measurement accuracy of less than 10 nm, verifying the accuracy and feasibility of the method.
作者单位邮编
邓忠文 西安电子科技大学 空间科学与技术学院 710071
刘传锋 西安电子科技大学 空间科学与技术学院 
张恒康 北京控制工程研究所 空间光电测量与感知实验室 
孙海峰 西安电子科技大学 空间科学与技术学院 710071
张树威 西安电子科技大学 空间科学与技术学院 
中文关键词:  激光扫频干涉  电光边带调制  绝对测距  全相位快速傅里叶变换  
英文关键词:frequency scanning interferometry  electro-optical sideband modulation  absolute ranging  all-phase fast Fourier transform
基金项目:国家自然科学(52205576);光电测量与智能感知中关村开放实验室开放基金(LabSOMP-2023-04)
DOI:
引用本文:
关闭