基于改进Mask R-CNN的航空发动机 保险丝实例分割方法
Lockwire instance segmentation method based on improved Mask R-CNN
投稿时间:2024-12-12  修订日期:2024-12-23
HTML    查看/发表评论  下载PDF阅读器
中文摘要:
      航空发动机保险丝分割是实现其绕向和扭辫密度检测的关键步骤。针对航空发动机保险丝成像背景复杂、光照不均、目标区域占比小等导致的保险丝识别精度低的问题,提出一种改进的Mask R-CNN保险丝实例分割模型。首先分别对保险丝图像的R、G、B三个通道进行不同程度的伽马校正将其转化为伪彩色图像,同时增强对比度;然后,针对保险丝的细长曲线几何特征,将动态蛇形卷积融入Mask R-CNN的骨干网络Resnet中,使得网络在特征提取时自适应地聚焦细长弯曲的局部结构;最后在特征融合阶段引入CBAM注意力机制,提升小目标浅层特征的保留,从而提高网络对小目标的感知能力。实验结果表明,改进后的模型掩码和边界框的AP50分别达到了82.54%和93.13%,较基础模型分别提升了5.83%和3.47%,实现了较大的精度提升,改善了漏检、误检问题。
英文摘要:
Aero-engine lockwire segmentation is the key step to realize the detection of its winding and twist braid density. Due to the complex background, uneven illumination and small percentage of the target region, the identification precision of aero-engine lockwire is low. This paper propose an improved Mask R-CNN model for lockwire instance segmentation. Firstly, the gamma correction of R, G and B channels is carried out to transform the lockwire image into pseudo-color image and enhance the contrast. Then, the dynamic snake-shaped convolution was incorporated into Resnet, the backbone network of Mask R-CNN, to make the network to adaptively focus on the slender and curved local structure during feature extraction. Finally, the CBAM attention mechanism was introduced in the feature fusion phase, in order to improve the perception of small target and preserve the shallow features of small target. The experimental results show that, the mask and?bounding box AP50 of the improved module was 82.54% and 93.13% . Compared to basic mode, the AP50 was improved by 5.83% and 3.47%, witch proves the proposed method can improve the segmentation accuracy and reduce the missed and false detection.
作者单位邮编
张凤飞 北京航空航天大学 100191
孙军华 北京航空航天大学 
中文关键词:  航空发动机保险丝  Mask R-CNN  实例分割  动态蛇形卷积  CBAM
英文关键词:Aero-engine lockwire  Mask R-CNN  Instance segmentation  dynamic snake-shaped convolution  CBAM
基金项目:
DOI:
引用本文:
关闭